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It is shown that when a viscoplastic fluid has weakly plastic properties
the effective turbulent viscosity of the flow may be lowered,

A recent series of experimental investigations
has reliably established the fact that the hydraulie
resistance for turbulent flow regimes in channels is
lowered by introducing small quantities of addifives
into the flow [1]. In view of possible practical appli-
cations, it is important to explain the nature of this
phenomenon, As yet, however, there is no single
satisfactory theory to explain it. Some authors [2], for
example, attribute the lowering of hydraulic resistance
to a decrease of viscosity in the layer next to the
channel wall on introducing surface-active additives
into the stream. Others [3] explain it as the result of
the formation of a distinctive supermolecular struc-—
ture in the flow, which damps the high-frequency
part of the turbulent pulsation spectrum. These two
explanations do not exclude each other, however,
and it is possible that both causes are operative
simultaneously,

The present paper discusses still another expla-
nation for the lowering of hydraulic resistance in
turbulent flow regimes by introducing additives into
the flow. It is based on the supposition that the super-
molecular structure formed by introducing additives
to the fluid transforms the fluid into a general class
of non-Newtonian media, the so called viscoplastie
fluids. These media are considered in rheoclogy, and
some examples are oil paints, solutions of clay in
water, and pastes [4, 5]. The internal spatial structure
is governed by the fact that viscoplastic fluids have
a certain limiting shear stress 7y, For stresses less
than 7y, the structure turns out to be sufficiently
rigid not to break down, and the viscoplastic fluid
behaves like a solid elastic body. For stresses greater
than 7, the viscoplastic fluid behaves like an ordinary
Newtonian fluid, The rheological equation of a visco~
plastic fluid connecting the shear stress T with the
rate of shear deformation y = dv/dy has the following
form for two-dimensional motion:

t=Tnm, (1)
¥l
where the plastic viscosity 1 and 7y are rheological
characteristics of the medium, For 7 =0 we have
the case of an ordinary Newtonian fluid.

If the fluids in the experiments [1] really had a
supermolecular structure, they could certainly be
regarded as viscoplastic with vanishingly small values
of 7;. The presence of a small limiting shear stress
To would be virtually insignificant for laminar flow

regimes, but on the other hand could turn out to be
important for turbulent flow,

It is well known that in developed turbulence the
kinetic energy of the average flow is transferred
through pulsations of successively smaller scale
sizes. Energy dissipation occurs in the smallest of
these, smaller than the Kolmogorov inner scale I [6].
If the medium has viscoplastic properties, we may as~
sume that those pulsations are damped in which values
of shear stress 7 are not attained. We shall show
that, for vanishingly small 7, this action may lead to
a diminution of the effective turbulent viscosity.

We shall consider developed turbulent motion in
a straight cylindrical pipe, where the fluid is visco~
plastic with a small value of limiting shear siress
{1y — 0}, Assuming that the plastic properties of the
fluid are of fundamental importance for the smallest
pulsation scale sizes in the interval A <1, we shall
suppose that all the conclusions of turbulence theory
for ordinary Newtonian fluids are valid for the entire
inertial interval of pulsation scale sizes A > [ and
for scale sizes ! approximately egual to the inner
scale (A ~ 7). Thus, if U is the maximum value of
the velocity at the center of the pipe, and L is the
diameter of the pipe, then the energy dissipated per
unit time per unit mass is defined as

U3

e~ (2}

and the inner scale [ and the corresponding pulsation
velocity v; for this scale are

L

I~ (3)

u
R

v~ {4)
where R = UL/v is the Reynolds number of the main
flow [6].

In the case of a Newtonian fluid, the corresponding
velocities vy for pulsations of scale sizes less than
the imner scale | may be represented in the form
of an expansion in powers of A, where it is sufficient

to confine ourselves to the first term in the first
approximation [6]:

vy =a;h, ay = const. {5)

The order of magnitude of the expansion coefficient ay
is found from (3)~(4), since vy = vy for A =[:

ay ~ %RW (6)
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In the case of a viscoplastic fluid with small 7, the

expansion in powers of A in the expression for v,
(5) should contain a zero-order term agy, which is
a function of the plasticity parameter 7:

U =ag+ah, & & = const. {0)

As X decreases, the velocity decreases, and begin-
ning from some scale gize s, pulsations with scale
sizes A < s will be suppressed due to the plastic
properties of the medium. The scale size s of the
smallest permissible pulsations may be determined
from (7) and the condition vg = 0:

§ = —m ——, (8)

On the assumption which has been made, the plastic
properties of the fluid exert a negligible effect on the
velocity pulsations for scale sizes A & [, inview of
the smaliness of 7. Thus,

fao & ml (9)
or, from (8),
sL (10

We stress that the strong inequality (10), a result of
the fact that the medium has only weakly plastic prop~
erties, is at the same time the condition for retaining
the results of turbulence theory for Newtonian fluids
in the inertial interval of scale sizes A > 1 and for
A = [. Consequently, expression {(6) may be retained
for determining the coefficient a;. Together with this,
the relation (1) may be applied to pulsations of scale
size 1, to give

Uy — T, —To
e (11)

where 7] is the shear stress in pulsations of scale

size 1. Comparing (11) and (7), for A = [ we may write

down an expression for the coefficient ¢ in the form
Tp

ay = —1. (12)
’ 1

As is to be expected, ag,s — 0 for 1y —0. Inserting
(6) and (12) in (8), we have the following expression
for s:

ng L

SR e = LR, (13)
n

where k = 7,/pU? is a dimensionless criterion of the
plastic properties of the medium, It follows from
(10) and (13) that kRY/2 « 1.

Relations (5) and (6) may be obtained in the case of
a Newtonian fluid, if we directly equate expression
(2) to the quantity

£~V (%)2, (14)

which determines the energy ¢ dissipated through the
velocity gradient of one of the pulsations of scale size
A < I in which the digsipation actually occurs [6].
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In the case of a viscoplastic fluid with vanishingly
small 7y, the definition (14) may be retained only for
those values of A ~ [, for whichthe presence of plastic
properties is unimportant. Thus, setting vy = a¢ + aA
in (14) and A =, and neglecting small second—order
quantities, we obtain

e~v(a2+2a°a1)

(15)

Finally, determining the turbulent vigcosity v from
the expression

U2
BNVt”Z'z— (16)

and equating (15) and (16), while taking (6) and (12) into
account, we obtain

, ~v[R —2kRY* |, (in

Thus, on increasing the plasticity criterion k, the
effective turbulent viscosity may decrease. It should,
however, be remembered that this proof refers only
to viscoplastic media with vanishingly small 7, for
which kRY/2 « 1,

NOTATION

a; and @y are pulsation-velocity expansion coeffi-
cients; vy, vy, and vg are pulsation velocities; 7 and
77 are shear stresses; 7; is the limiting shear stress;
v is the rate of shear deformation; I is the inner scale
size of the turbulence; s is the scale size of the min-
imum permigsible pulsations; L is the diameter of the
pipe; U is the velocity at the center of the pipe; v is
the kinematic viscosity coefficient; v is the turbulent
viscosity coefficient; R is the Reynolds number for the
main flow; k is the dimensionless plasticity criterion;
¢ is the dissipated-energy density,
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